Tetrahedron Letters,Vol.27,No.39,pp 4775-4778,1986 0040-4039/86 \$3.00 + .OO Printed in Great Britain

A PRACTICAL METHOD FOR MULTIGRAM SCALE SYNTHESIS OF (+)-METHYL 5(S),6(R)- EPOXY-6-FORMYLHEXANOATE AND 2(R),3(S)-EPOXYOCTANAL, KEY INTERMEDIATES FOR SYNTHESIS OF LEUKOTRIENES A4

Yuichi Kobayashi, Yasunori Kitano, Takashi Matsumoto, and Fumie Sato* Department of Chemical Engineering, Tokyo Institute of Technology, Meguro Tokyo 152, Japan

Summary: A practical method for multigram scale synthesis of (+)-methyl 5(S), $6(R)$ -epoxy-6-formylhexanoate (1) and $2(R)$, $3(S)$ -epoxyoctanal (13), key intermediates for synthesis of leukotrienes A_{Λ} , starting with (R)-glyceraldehyde acetonide (3) is described.

The preparation of $(+)$ -methyl $5(S)$, $6(R)$ -epoxy-6-formylhexanoate (1), which is the key intermediate in synthesis of natural leukotriene A_A (LTA_A), has attracted much interest in recent years.¹ A chiral pool approach has been shown to be an effective and practical method for preparation of 1 . Thus, $\frac{1}{\sqrt{2}}$ was synthesized starting with (-)-D-ribose,² (+)-2-deoxy-D-ribose,³ (-)-D-araboascorbic acid,⁴ or (+)-D-glucose.⁴ The asymmetric epoxidation of

achiral allylic alcohols using the Sharpless process is another practical approach to 1.5 These syntheses involve the oxidation of the epoxy alcohol 2 to 1 using Collins reagent. This oxidation step, however, required more than 6 equiv of Cro_{3} $2c_{5}H_{5}N$ and the dimeric ester was produced as a by-product, thus, making isolation and purification process somewhat troublesome. So far only one report is available in which 1 is synthesized without passing through 2.⁶ Thus, Rokach and his coworkers synthesized 1 by oxidative cleavage of 5a which was prepared by epoxidation of the olefinic ester $\frac{4}{3}$ obtained from (S)-glyceraldehyde acetonide $\frac{3}{3}$, This epoxidation step, however, suffers from low diastereoselectivity of 2 : 1. Herein we report a highly selective method for large-scale preparation of 1 without passing through 2 starting with $(R)-3^8$ which is more readily available than

 $(S) - 3.7$ The present method is based on the highly diastereoselective addition reaction of 3 with 1-trimethylsilylvinyl copper compounds⁹ and the V⁵⁺-catalyzed epoxidation of the resulting adducts with t-butylhydroperoxide (TBHP) which proceeds with near 100% diastereoselectivity.¹⁰

Our synthesis of 1 is detailed in Scheme 1. The acetylene 6 was prepared in large quantity in 24% overall yield from commercially available 1-penten-3-ol using a couple of operationally simple reactions. Hydromagnesiation¹¹ of 6 (4.0 g, 21 mmol) using $Bu^{\frac{1}{2}}MgBr$ (18 mmol) and $(n-C_5H_5)$ ₂TiCl₂ (159 mg, 0.6 mmol) in Et₂O (26 ml), treatment with CuI (4.6 g, 24 mmol) in THF (100 ml) and Me₂S (13 ml) (-70 ^oC, 30 min) and then with (R)-3 (1.58 g, 12.1 mmol) (-70 $^{\circ}C$, 30 min and then -70 $^{\circ}C \rightarrow$ room temperature, 3 h) provided β (3.36 g, 85% based on (R)-3) with a high diastereoselectivity of >40: 1.9 Epoxidation of 8 (9.5 g, 29 mmol) using TBHP (6 ml, 44 mmol, 70% solution) and VO(acac)₂ (ca 80 mg) in CH₂Cl₂ (90 ml) (0^oC, 15 h) gave the corresponding epoxide as the sole product which was then protodesilylated¹² using Bu^tOK (3.26 g, 29.1 mmol) and Buⁿ₄NF (7.61 g, 29.1 mmol) in THF (94 ml) (0 $^{\circ}$ C, 10 min) to give 9 (6.5 g). Acetylation of 9 followed by oxidation¹³ of the resulting acetate 10 with NaIO₄ (24.5 g, 115 mmol) and RuCl₃.3H₂O (120 mg, 0.46 mmol) in a mixture of CCl₄ (50 ml), CH₃CN (50 ml) and H_2 0 (100 ml) (room temperature, 1.5 h) furnished the ester 11 (4.72 g, 59% from 8) after esterification and deacetylation. Finally oxidative cleavage of 11 (4.72 g, 17.2 mmol) using NaIO₄ (11.05 g, 51.6 mmol) in Pr¹OH (80 ml), ACOH (30 ml) and H₂O (80 ml) (20 $^{\circ}$ C, 25 h) afforded the aldehyde 1 (2.16 g, 73%, $\begin{bmatrix} \alpha I_D^{25} & +50.6^{\circ} \end{bmatrix}$ (c 0.83, CHCl₃)) after purification by The ¹H NMR data of 1 prepared here was in accord with the chromatography. data recorded in the literature.^{2,4} Since the reported rotation for 1 have been varied widely (from +24.5^o to +74.9^o)²⁻⁵ because of the great tendency to hydrate, enantiomeric purity of 1 was confirmed by transformation to the epoxy alcohol 2 ($[a]_{D}^{25}$ -34.9^o (c 0.50, CHCl₃); lit. 4, $[a]_{D}^{24}$ -37.4^o (c 0.27, CHCl₃), lit. 5a, $[a]_{D}^{24}$ -33.6^o (c 0.36, CHCl₃)).

Using the same strategy used above, we prepared 1.43 g of $2(R),3(S)$ epoxyoctanal (13) $(\lceil a \rceil)_2^{25}$ +79.4⁰ (c 1.00, Et₂0)), intermediate for synthesis
of 14(S),15(S)-LTA₄,¹⁴ starting with 2.47 g of (R)-3 (53% overall yield and >40 : 1 overall diastereoselectivity) (Scheme 2). Noteworthy is the fact that the final oxidative cleavage of 12 to 13 under the same conditions used

Scheme 1. i, MeC(OEt)₃, EtCOOH (cat); ii, LiAlH₄; iii, PBr₃, C₅H₅N; iv, NaC≡CH, Me₂SO; v, MeLi then Me3SiCl; vi, BuⁱMgBr, (n-C₅H₅)₂TiCl₂ (cat), Et₂₀ then CuI, THF, Me₂S; vii, $(R)-3$; viii, TBHP, VO(acac)₂ (cat); ix, Bu^tOK, Buⁿ4NF, THF; x, Ac₂O, C₅H₅N; xi, NaIO₄, RuCl₃.3H₂O then CH₂N₂, xii, NaOMe, MeOH; xiii, NaIO₄, AcOH, Pr¹OH, H₂O.

Scheme 2. i, BuⁱMgBr, (n-C₅H₅)₂TiCl₂ (cat), Et₂O then CuI, Me₂S, THF; ii, (R)-3; iii, TBHP, VO(acac)₂ (cat); iv, Bu^tOK, Buⁿ4NF, THF; v, H₅IO₆, THF, $H₂O₁$

for 11 was very slow and we executed this transformation using H_5I06 in THF and H_2O (10-15 ^OC, 24 h). Enantiomeric purity of 13 was determined by converting 13 into 2(S),3(S)-epoxy-1-octanol ($\begin{bmatrix} a \end{bmatrix}_{n}^{25}$ -44.0^o (c 1.01, CHCl₃); lit. 14, $\left[\alpha\right]_D$ -44^O (c 1.0, CHCl₃)) using NaBH₄ in MeOH.

The large-scale synthesis of the optically active epoxy aldehydes 1 and 13 using the operationally simple reactions are described. This synthesis can be applied to other optically active 2,3-epoxy aldehydes including

 $(Z)-2(R)$, 3(S)-epoxyundec-5-enal, the intermediate in the synthesis of 11,12- LTA_A .¹⁵

thank the Naito Foundation and the Asahi Glass Foundation for financial support;

References

4778

- **1** For reviews, see the following: J. Rokach and J. Adams, Act. Chem. Res., 1985, 18, 87; R. H. Green, P. F. Lambeth, Tetrahedron, 1983, 39, 1687.
- 2 E. J. Corey, D. A. Clark, G. Goto, A. Marfat, C. Mioskowski, B. Samuelsson, S. Hammarstrom, J. Am. Chem. Soc., 1980, 102, 1436.
- 3 J. Rocach, R. Zamboni, C.-K. Lau, and Y. Guindon, Tetrahedron Lett., 1981, 22, 2759; J. Rokach, C.-K. Lau, R. Zamboni, and Y. Guindon, ibid., p. 2763.
- 4 N. Cohen, B. L. Banner, R. J. Lopresti, F. Wong, M. Rosenberger, Y.-Y. Liu, E. Thom, and A. A. Liebman, J. Am. Chem. Soc., 1983, 105, 3661; N. Cohen, B. L. Banner, and R. J. Lopresti, Tetrahedron Lett., 1980, 21 , 4163.
- 5 a) B. E. Rossiter, T. Katsuki, and K. B. Sharpless, J. Am. Chem. **sot., 1981,** 103, 464; b) E. J. Corey, S. Hashimoto, and A. E. Barton, ibid., p. - 721; c) G. A. Tolstikov, M. S. Miftakhov, A. G. Tolstikov, and E. T. Lesnikova, Zh. Org. Khim., 1983, 2, 463; d) **M. S.** Miftakhov, A. G. Tolstikov, and G. A. Tolstikov, ibid., 1984, 20, 678.
- 6 J. Rokach, R. N. Young, M. Kakushima, C.-K. Lau, R. Seguin, R. Frenette, and Y. Guindon, Tetrahedron Lett., 1981, 22, 979.
- 7 M. E. Jung, T. J. Shaw, J. Am. Chem. Soc., 1980, 102, 6304; S. B. Baker, ibid., **1952, 74,** 827.
- 8 E. Baer, H. O. L. Fischer, J. Biol. Chem., 1939, 128, 463.
- 9 F. Sate, Y. Kobayashi, 0. Takahashi, T. Chiba, Y. Takeda, and M. Kusakabe, J. Chem. Sot., Chem. Commun., 1985, 1636.
- 10 H. Tomioka, T. Suzuki, K. Oshima, and H. Nozaki, Tetrahedron Lett., 1982, 2, 3387; A. S. Narula, ibid., p. 5579.
- 11 F. Sato, J. Organometal. Chem., 1985, 285, 53; F. Sato, H. Ishikawa, and M. Sato, Tetrahedron Lett., 1981, 22, 85.
- 12 H. Uchiyama, Y. Kobayashi, and F. Sato, Chem. Lett., 1985, 467; K. Yamamoto, T. Kimura, and Y. Tomo, Tetrahedron Lett., 1985, 26, 4505.
- 13 P. H. J. Carlsen, T. Katsuki, V. S. Martin, and K. B. Sharpless, J. Org. **Chem., 1981, 46, 3936.**
- 14 R. Zamboni, S. Milette, and J. Rokach, Tetrahedron Lett., 1983, <u>2</u>4, 4899.
- 15 **R.** Zamboni, S. Milette, and J. Rokach, Tetrahedron Lett., 1984, 25, 5835. (Received in Japan 8 July 1986)